Colorimetry and Its Application

R. Chung, Professor

Colorimetry has become more and more useful in graphic arts imaging for color specification, process control, and quality assurance.

Topics Covered

- Light, object, and color vision
- Tristimulus integration
 - 1931 CIEXYZ color space
 - 1976 CIELAB color space
- Color matching and color difference
- Colorimetry application
Light and Color

- Light exists as a form of energy.
- Color is a visual sensation.
- Visual sensation requires
 - Light
 - Object
 - Observer

Human Color Vision

- Color perception is complex.
 - Even if we standardize the lighting condition, the color of the same object may be perceived differently by two people.
 - Perception is influenced by age, sex, cultural experiences
- CIE colorimetry standardizes how we measure color.
 - Color measurement may be able to predict color perception.
Color Vision Tests

- Ishihara’s test for color blindness
- Farnsworth-Munsell 100 Hue test

Color Vision Deficiency

- Anomalous trichromats
 - normal
 - deutan
 - tritan
- Statistics
 - 7% of male population have color vision defects
 - Less than 0.5% of female population have color vision defects
Standard Observer

- In 1931, CIE defined a set of mathematical functions which describe the sensitivity of the eye.
 - Based on two independent color matching experiments by Wright and Guild
 - To quantify how spectrum colors are matched rather than to specify a color sensation

Color Matching Experiment

- Three imaginary primaries (R, G, B) were used in the color matching experiments.
1931 2o Standard Observer

- The amount of tristimulus values required to match the equal-energy spectrum

Mathematics is used to transform color matching functions (x-bar, y-bar, z-bar) without negative portion.

Rods & Cones Distribution

- Color vision is centered around 2-degree fovea where cones are heavily concentrated.

Source: Leo Hurvich
Professor of Psychology
Univ. of Pennsylvania
Supplementary Observer

- A CIE 10o standard observer was established in 1964.
 - Larger visual field was used for color matching.
 - Suitable for paint, textile, and plastics applications

![Illustration of Supplementary Observer]

Spectral Power Distribution

- SPD is measured by a spectroradiometer.
 - Color temperature describes the hue of the light source.
 - Lamps with D50 color temperature can be different in spectral energy distribution.
 - A potential problem of metamerism
 - CRI describes its color rendering capability.
 - How complete spectral energies are across the visible spectrum
CIE Standard Illuminants

- **Illuminant A**
 - Tungsten
 - 2800oK

- **Illuminant D50**
 - Daylight
 - 5000oK

Source:
Hunt, R.W.G,
Measuring Colour (2nd edition, 1991)

SPD of F2 at 5 nm intervals (blue) shows spikes on top of the continuous emission.
- SPD of F2 at 10 nm intervals (red line) does not have sufficient resolution to show the spikes.
Object Color

- Measured by a spectrophotometer
 - A spectrophotometer measures the reflectance of a sample at many points across the visible spectrum.

Spectrophotometer

- Instrument design parameters
 - Geometry
 - 0 / 45
 - Measuring diffuse reflectance
 - Integrating sphere
 - Specular component included or excluded
 - Monochromator
 - Grating
 - Interference filters
 - Measurement spot size
Tristimulus Integration

- ISO 13655 (2009)
 - \(R(\lambda) \) is the reflectance factor at \(\lambda \).
 - \(WX(\lambda) \) is the weighting factor at \(\lambda \) for tristimulus value \(X \).
 - \(WY(\lambda) \) is the weighting factor at \(\lambda \) for tristimulus value \(Y \).
 - \(WZ(\lambda) \) is the weighting factor at \(\lambda \) for tristimulus value \(Z \).

\[
X = \sum_{400nm}^{700nm} R(\lambda) \times W_X(\lambda)
\]
\[
Y = \sum_{400nm}^{700nm} R(\lambda) \times W_Y(\lambda)
\]
\[
Z = \sum_{400nm}^{700nm} R(\lambda) \times W_Z(\lambda)
\]

XYZ-based TVI (ISO/TS 10128)

- Magenta and black
 \[
 TVI = 100 \left(\frac{Y_p - Y_t}{Y_p - Y_s} \right) - TV_{Input}
 \]

- Yellow
 \[
 TVI = 100 \left(\frac{Z_p - Z_t}{Z_p - Z_s} \right) - TV_{Input}
 \]

- Cyan
 \[
 TVI = 100 \left[\frac{X_p - 0.55Z_p}{X_p - 0.55Z_s} - (X_t - 0.55Z_t) \right] - TV_{Input}
 \]

Subscripts:
- p: paper
- t: tint
- s: solid
Measuring Tristimulus Values

- **Spectro-colorimeter**
 - Computationally derived with spectral data
 - ANSI CGATS.5 - 1993
 - Suitable for critical color communication

- **Filter-colorimeter**
 - Derived by means of optical integration with the light-filter-detector combination
 - Spectral data are not used

Color Space Models

- **CIE Chromaticity coordinates, Yxy**
 - Y is the lightness of the color
 - x represents fractional redness
 - y represents fractional greenness
 - z or (1-x-y) is the fractional blueness

\[
\begin{align*}
 x &= \frac{X}{X + Y + Z} \\
 y &= \frac{Y}{X + Y + Z}
\end{align*}
\]
Chromaticity Diagram

- Spectrum colors form a horse shoe shaped locus.
 - Dominant wavelength
 - Purity

CIE Color Naming

- Different wavelength region represents color names of different hues.
Color Gamut Comparison

- A printer’s CMYK color gamut is different from a monitor’s RGB color gamut.

Uniform Color Space

- MacAdam ellipses
 - Equal visual difference should be plotted with equal distance.
 - Chromaticity diagram
 - did not do well.
1976 CIELAB Color Space

- Opponent color theory
 - L* is lightness
 - a* is redness or greenness
 - Redness (if a* is positive)
 - Greenness (if a* is negative)
 - b* is yellowness or blueness
 - Yellowness (if b* is positive)
 - Blueness (if b* is negative)

XYZ-to-Lab Formulas

- ISO 13655
 \[L^* = 116\left(f\left(Y/Y_n\right) - 16\right)\]
 \[a^* = 500\left(f\left(X/X_n\right) - f\left(Y/Y_n\right)\right)\]
 \[b^* = 200\left(f\left(Y/Y_n\right) - f\left(Z/Z_n\right)\right)\]

X, Y, Z are the tristimulus values
Xn, Yn, Zn are the white point
Process Inks

- Real inks have incomplete reflection and absorption.
 - CIELAB is used to specify the ink color.
 - Sample preparation
 - Measurement conditions

<table>
<thead>
<tr>
<th>Ink</th>
<th>CIELAB (D50/2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L*</td>
<td>a*</td>
</tr>
<tr>
<td>Cyan</td>
<td>60.5</td>
<td>-44</td>
</tr>
<tr>
<td>Magenta</td>
<td>55.7</td>
<td>63.2</td>
</tr>
<tr>
<td>Yellow</td>
<td>88.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Black</td>
<td>10</td>
<td>0.4</td>
</tr>
</tbody>
</table>

CIE LCh Color Space

- The vector equivalent of the CIELAB color space
 - Metric chroma
 \[C^* = \sqrt{a^*2 + b^*2} \]
 - Hue angle
 \[h = \tan^{-1}\left(\frac{b^*}{a^*}\right) \]
Hue Angle Calculations

- Given a* (cell D17) and b* (cell E17)
 - Hue angle in radian (cell H17)
 - If(ATAN2(D17, E17)>=0, ATAN2(D17, E17), 2*PI()+ATAN2(D17, E17))
 - Hue angle in degrees=DEGREES(H17)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ID</td>
<td>L*</td>
<td>a*</td>
<td>b*</td>
<td>C*</td>
<td>h*b</td>
<td>Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>95.25</td>
<td>1.06</td>
<td>-2.53</td>
<td>5.45</td>
<td>0.95</td>
<td>283.846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>41.43</td>
<td>-6.13</td>
<td>-18.28</td>
<td>15.39</td>
<td>4.39</td>
<td>251.471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>24.65</td>
<td>9.54</td>
<td>8.52</td>
<td>12.76</td>
<td>0.71</td>
<td>40.94594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>56.17</td>
<td>-22.89</td>
<td>-27.13</td>
<td>35.42</td>
<td>0.62</td>
<td>230.1924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>56.26</td>
<td>-25.34</td>
<td>-25.65</td>
<td>28.75</td>
<td>0.25</td>
<td>245.7681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>67.31</td>
<td>15.11</td>
<td>15.11</td>
<td>41.46</td>
<td>0.72</td>
<td>41.35419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>69.63</td>
<td>39.93</td>
<td>14.50</td>
<td>41.45</td>
<td>0.36</td>
<td>20.41777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>66.75</td>
<td>-2.35</td>
<td>-26.18</td>
<td>28.34</td>
<td>1.64</td>
<td>95.76832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>61.97</td>
<td>-1.71</td>
<td>-47.85</td>
<td>44.94</td>
<td>1.84</td>
<td>195.3527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>53.94</td>
<td>-33.36</td>
<td>-5.32</td>
<td>35.56</td>
<td>3.51</td>
<td>130.6039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>62.54</td>
<td>-19.95</td>
<td>-4.50</td>
<td>20.35</td>
<td>5.36</td>
<td>192.2302</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Munsell Color Space

- Based on visual judgment
 - Hue
 - Value
 - Chroma

Notation: 5R 5/10
Device Dependent Color

- Computer graphics color space
 - RGB
- Designers color space
 - Swatchbook
- Printer color space
 - CMYK

Device Independent Color

- Act as a reference color (profile connection) space in color management systems
Color Matching

- **Invariant (or spectral) match**
 - When two colors have the same spectrophotometric curves (SPC), they will have the same tristimulus values.
 - Their match is invariant
 - If $(\text{SPC})_1 = (\text{SPC})_2$, then $(\text{XYZ})_1 = (\text{XYZ})_2$

- **Metameric (conditional) match**
 - When two colors have different spectrophotometric curves, but have the same tristimulus values
 - The color match is conditional.
 - The two objects are metamer.
 - $(\text{XYZ})_1 = (\text{XYZ})_2$, but $(\text{SPC})_1 \neq (\text{SPC})_2$
Color Difference

• For any two colors,
 - C1: L_1^*, a_1^*, b_1^*
 - C2: L_2^*, a_2^*, b_2^*
 - \(\Delta E \) is the total color difference
 \[
 \Delta E = \sqrt{(L_1^* - L_2^*)^2 + (a_1^* - a_2^*)^2 + (b_1^* - b_2^*)^2}
 \]

\(\Delta E \) is the abbreviation for ‘Empfindung’ in German, i.e., sensation.

Color Difference

• \(\Delta L^* \), \(\Delta a^* \) and \(\Delta b^* \) expressed as human visual sensation
 - Between a sample and a reference
 - (sample-reference)

<table>
<thead>
<tr>
<th>When</th>
<th>The Sample is</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta L^*) is ‘+’</td>
<td>Lighter</td>
</tr>
<tr>
<td>(\Delta L^*) is ‘-’</td>
<td>Darker</td>
</tr>
<tr>
<td>(\Delta a^*) is ‘+’</td>
<td>Redder or less green</td>
</tr>
<tr>
<td>(\Delta a^*) is ‘-’</td>
<td>Less red or greener</td>
</tr>
<tr>
<td>(\Delta b^*) is ‘+’</td>
<td>Yellower or less bluer</td>
</tr>
<tr>
<td>(\Delta b^*) is ‘-’</td>
<td>Less yellow or blue</td>
</tr>
</tbody>
</table>
Spot colors and trademark colors need to be matched closely.
- Small color difference is allowed

<table>
<thead>
<tr>
<th>ΔE</th>
<th>Perception</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>No difference</td>
<td>Excellent match</td>
</tr>
<tr>
<td>1~2</td>
<td>Just noticeable</td>
<td>Good match</td>
</tr>
<tr>
<td>4~6</td>
<td>Noticeable</td>
<td>Fair match</td>
</tr>
<tr>
<td>> 9</td>
<td>Strong difference</td>
<td>Poor match</td>
</tr>
</tbody>
</table>

- ΔE Magnitude, Perceptibility, and Acceptability

Acceptability
- Instrument error
- Ink verification

Perceptibility
- No difference
- Just noticeable
- Noticeable
- Strong difference

As interpreted as a simple field
Color Tolerance as a Volume

- Three color tolerancing models
 - ΔL^*, Δa^*, and Δb^* form a rectangular box.
 - ΔL^*, ΔC^*, and Δhab^* form a wedge.
 - CMC takes on an ellipsoidal-shaped volume.

CMC Tolerancing

- The eye is better at detecting hue differences in the orange than in the green.
- The eye is more sensitive to low chroma difference than high chroma difference.
- The eye has greater acceptance for shifts in the lightness (L) than in the chromaticity (C) dimension.
Summary

- Color is a visual sensation.
 - Light, object, and human vision are involved.

- Tristimulus integration is the basis for color measurement.
 - CIELAB color space is the language for color specifications.

- Color matching is possible between metamers.
 - Color difference is useful for determining acceptability.

Colorimetry Application

- Material specifications
 - How inks are specified and compared

- Process characterization
 - How color gamut, color variations, and RGB-to-CMYK conversion are specified

- Color matching and image reproduction
 - \(\Delta E \) matters to color matching.
 - \(\Delta E \) does not matter to pleasing pictorial color image reproduction.
Material Specifications

- Colorimetric properties of halftone tints
 - Cyan screen tints

- Colorimetric differences
 - Rubine ink & rhodamine ink

- Colorimetric specifications
 - Standardized printing inks for offset lithography
 - ISO 2846

Colorimetric Properties

- Cyan halftone tints
 - Four levels of dot area coverage
 - 25%, 50%, 75%, & solid

 - Their SPCs are non-crossing
 - The wavelength of the max. absorption is at 630 nm
 - The SPC of the solid patch is situated in the bottom.
Colorimetric Properties

- Cyan halftone tints
 - Tints have similar hue angle in the a* b* diagram as the solid, but differ in metric chroma (C*)
 - When solid IFT increases, hue shift may result – the mass tone effect.

Colorimetric Differences

- Two magenta inks
 - Rubine is a reddish magenta ink.
 - Cost cheaper
 - Rhodamine a bluish magenta ink.
 - More expensive
Colorimetric Differences

- **Rubine & rhodamine**
 - Spectral reflectance in the blue region of SPC
 - Hue angle of the $a^* b^*$ diagram

```
% Reflectance

Wavelength (nm)

400 450 500 550 600 650 700

Rubine   Rhodamine

(Yellowish)

(Bluish)
```

Colorimetric Specifications

- **ISO 2846**—Standardized printing inks for offset lithography
 - C, M, Y, K
 - A single set of color coordinates could adequately represent standard inks around the world.
 - Endorsed by ink associations from Europe, America, and Japan

- Sample preparation
 - Should be made on the reference substrate
 - APCO II/II
 - The nominal ink film thickness for web heat-set ink is 1 mm.
 - 0.7-1.3 mm for cyan, magenta, and yellow
 - 0.9-1.3 mm for black

- Example of conformance
 - Ink 1

- Example of non-conformance
 - Ink 2—Deviation of ink color
 - Ink 3—correct in ink color, not in pigment concentration

Process Characterization

- Color gamut comparison
 - Monitor color gamut
 - Printer color gamut

- Color variations
 - Spatial uniformity within the sheet
 - Temporal consistency from sheet-to-sheet
 - XYZ-based TVI assessment
Monitor Color gamut

- Ambient lighting influences monitor color gamut.

Monitor Color Gamut

- Ambient lighting also influences lightness range of the monitor.
 - High ambient lighting
 - Adds flare in the black point
 - Reduces lightness range

Hard copy has brighter white point
Printer Color Gamut

- Chromaticity / a*b* diagram can be deceiving.
 - Expressed in two dimensions without lightness

Printer Color Gamut Slice

- Chromaticity at constant lightness plane requires special test targets.
Color Variation Rules

- All imaging processes have color variations.
 - Some processes have more variations than other processes.

Sources of variability

- Uniformity within the sheet
- Sheet-to-sheet
- Run-to-run

Assignable variations can be corrected for; random variations cannot.

Uniformity within the Sheet

Spot color by flexo (30 measurements across)
Consistency from Sheet-to-sheet

Spot color by flexo (30 consecutive sheets)

<table>
<thead>
<tr>
<th>Sample</th>
<th>72_Brown</th>
<th>Sample</th>
<th>75_Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>a*</td>
<td>L*</td>
<td>a*</td>
</tr>
<tr>
<td>1</td>
<td>27.9</td>
<td>25.2</td>
<td>30.5</td>
</tr>
<tr>
<td>2</td>
<td>28.1</td>
<td>25.4</td>
<td>30.4</td>
</tr>
<tr>
<td>3</td>
<td>28.3</td>
<td>25.6</td>
<td>30.3</td>
</tr>
<tr>
<td>4</td>
<td>28.5</td>
<td>25.8</td>
<td>30.2</td>
</tr>
<tr>
<td>5</td>
<td>28.7</td>
<td>26.0</td>
<td>30.1</td>
</tr>
<tr>
<td>6</td>
<td>28.9</td>
<td>26.2</td>
<td>30.0</td>
</tr>
<tr>
<td>7</td>
<td>29.1</td>
<td>26.4</td>
<td>29.9</td>
</tr>
<tr>
<td>8</td>
<td>29.3</td>
<td>26.6</td>
<td>29.8</td>
</tr>
<tr>
<td>9</td>
<td>29.5</td>
<td>26.8</td>
<td>29.7</td>
</tr>
<tr>
<td>10</td>
<td>29.7</td>
<td>27.0</td>
<td>29.6</td>
</tr>
<tr>
<td>11</td>
<td>29.9</td>
<td>27.2</td>
<td>29.5</td>
</tr>
<tr>
<td>12</td>
<td>30.1</td>
<td>27.4</td>
<td>29.4</td>
</tr>
<tr>
<td>13</td>
<td>30.3</td>
<td>27.6</td>
<td>29.3</td>
</tr>
<tr>
<td>14</td>
<td>30.5</td>
<td>27.8</td>
<td>29.2</td>
</tr>
<tr>
<td>15</td>
<td>30.7</td>
<td>28.0</td>
<td>29.1</td>
</tr>
<tr>
<td>16</td>
<td>30.9</td>
<td>28.2</td>
<td>29.0</td>
</tr>
<tr>
<td>17</td>
<td>31.1</td>
<td>28.4</td>
<td>28.9</td>
</tr>
<tr>
<td>18</td>
<td>31.3</td>
<td>28.6</td>
<td>28.8</td>
</tr>
<tr>
<td>19</td>
<td>31.5</td>
<td>28.8</td>
<td>28.7</td>
</tr>
<tr>
<td>20</td>
<td>31.7</td>
<td>29.0</td>
<td>28.6</td>
</tr>
<tr>
<td>21</td>
<td>31.9</td>
<td>29.2</td>
<td>28.5</td>
</tr>
<tr>
<td>22</td>
<td>32.1</td>
<td>29.4</td>
<td>28.4</td>
</tr>
<tr>
<td>23</td>
<td>32.3</td>
<td>29.6</td>
<td>28.3</td>
</tr>
<tr>
<td>24</td>
<td>32.5</td>
<td>29.8</td>
<td>28.2</td>
</tr>
<tr>
<td>25</td>
<td>32.7</td>
<td>30.0</td>
<td>28.1</td>
</tr>
<tr>
<td>26</td>
<td>32.9</td>
<td>30.2</td>
<td>28.0</td>
</tr>
<tr>
<td>27</td>
<td>33.1</td>
<td>30.4</td>
<td>27.9</td>
</tr>
<tr>
<td>28</td>
<td>33.3</td>
<td>30.6</td>
<td>27.8</td>
</tr>
<tr>
<td>29</td>
<td>33.5</td>
<td>30.8</td>
<td>27.7</td>
</tr>
<tr>
<td>30</td>
<td>33.7</td>
<td>31.0</td>
<td>27.6</td>
</tr>
</tbody>
</table>

XYZ-based TVI (ISO/TS 10128)

- **Magenta and black**
 \[
 TVI = 100 \left(\frac{Y_p - Y_s}{Y_p - Y_s} \right) - TV_{Input}
 \]

- **Yellow**
 \[
 TVI = 100 \left(\frac{Z_p - Z_s}{Z_p - Z_s} \right) - TV_{Input}
 \]

- **Cyan**
 \[
 TVI = 100 \left[\frac{(X_s - 0.55Z_s) - (X_s - 0.55Z_s)}{(X_s - 0.55Z_s) - (X_s - 0.55Z_s)} \right] - TV_{Input}
 \]

Subscripts
- \(p\): paper
- \(t\): tint
- \(s\): solid
Color Matching

- Spot color printing vs. CMYK printing
 - Avoid out-of-gamut color
 - Small ΔE matters

Pantone swatchbook is printed by dry offset using special formulated inks.

Pantone-to-digital printing uses a RIP-based look-up table.

Pictorial Color Image

- Pleasingness of the reproduction matters.
 - Minimum ΔE is not important
 - Particularly when ΔE is due to gamut clipping
Color Image Reproduction

- **Color Research & Appl. (Pearson, 1986)**
 - Large ΔEs exist between the original and a very acceptable photographic print
 - Tone reproduction and gamut compression are key factors for pleasing reproduction

<table>
<thead>
<tr>
<th>statistics</th>
<th>All patches in Macbeth colorchecker</th>
<th>Std. Observer from 1931 to 1964</th>
<th>Geometry 0/45 to sphere</th>
<th>color temp. difference by 4000K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>15.9</td>
<td>1.4</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>6.8</td>
<td>1.6</td>
<td>3.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Min.</td>
<td>4.4</td>
<td>0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Max.</td>
<td>31.7</td>
<td>4.7</td>
<td>12.3</td>
<td>8.4</td>
</tr>
<tr>
<td>Range</td>
<td>27.3</td>
<td>4.7</td>
<td>12.1</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th></th>
<th>Densitometer</th>
<th>Spectro-colorimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>density</td>
<td>XYZ, Yxy, CIELAB</td>
</tr>
<tr>
<td>Difference (Single number)</td>
<td>none</td>
<td>ΔE</td>
</tr>
<tr>
<td>Spectral response</td>
<td>match to peak absorption of process inks</td>
<td>match the 1931 CIE standard observer</td>
</tr>
<tr>
<td>Geometry</td>
<td>0/45</td>
<td>0/45, integrating</td>
</tr>
<tr>
<td>Color perception</td>
<td>anomalous trichromat</td>
<td>color-normal observer</td>
</tr>
<tr>
<td>Dark shade discrim.</td>
<td>good</td>
<td>okay</td>
</tr>
<tr>
<td>Light shade discrim.</td>
<td>poor</td>
<td>good</td>
</tr>
<tr>
<td>Standardization</td>
<td>ANSI status T</td>
<td>CIE</td>
</tr>
<tr>
<td>Applications</td>
<td>process control for CMYK printing only</td>
<td>color specification process control quality assurance</td>
</tr>
</tbody>
</table>
Summary

- Colorimetry has multiple uses in graphic arts imaging practices.
 - Ink specifications and standardization
 - Process characterization and standardization
 - Spot color matching

- Colorimetry cannot judge pleasingness of pictorial color images.
 - Only the human color perception can